Welcome!

.NET Authors: Lori MacVittie, Yeshim Deniz, Ivan Antsipau, Liz McMillan, Michael Bushong

Related Topics: .NET

.NET: Article

Using MVS2005 with VS.NET

Better use of server capacity

Microsoft Virtual Server 2005 (VS2005), a new addition to the Microsoft Server family, emulates physical hardware to create multiple independently operating environments or virtual machines (VMs).

This article reviews portions of a C# application leveraging the VS2005 API. We will get you started with VS2005 here. The complete application code demonstrates one of the more interesting aspects of VMs: differencing hard drives. These drive disks allow you to toggle a VM from one configuration to a different configuration and back. This capability is especially useful for software testing and verification, where hardware resources are limited.

VS2005 is amazingly powerful but also adds a new level of complexity to server management. The VS2005 background and code provided in this article are just the tip of the iceberg to get you started. Take some time to work with virtualization. You'll quickly see how easily virtualization can benefit your organization.

Virtual Server Background
A full introduction to VS2005 could fill a book. The objective of this article is not to overwhelm you with details, but to show you how to write a simple interface program to VS2005 that does useful work. Before diving into code, some brief background on virtualization is necessary.

Virtualization enables a single physical server, or host, to be partitioned into many independently operating virtual servers. As depicted in Figure 1, the VS2005 software emulates the disk, network, keyboard/video/ mouse, processor, and memory needed to create a server. Each server is totally isolated from the others with no visibility into other VMs running on the same host. The virtualization software governs resource usage to ensure that one VM does not consume all of the host's CPU capacity.

It is important to distinguish between hosts and VMs for VS2005 compatibility. The host that runs the virtualization software must be running Windows Server 2003 (Windows XP works but is not "supported"). The VMs run a broad range of operating systems, including most flavors of Linux, DOS, Novell, Windows NT, and recent Windows releases but Microsoft will only support Windows. Microsoft, in fact, intends for VMs to become the primary supported platform for Windows NT.

What Makes Virtualization Compelling?
Virtualization is compelling because of the increased efficiency and control it brings to the physical server data center. Our company, Surgient, Inc., is an on-demand enterprise software company whose applications automate software sales, marketing, training, and testing processes. Surgient has been using virtualization platforms since 2001 as early beta testers of first-generation virtual server products. During that time, we have deployed over a thousand hosts and uncountable VMs. If you've experienced the Microsoft Visual Studio.NET hands-on trial, then you've used the Surgient demo management product and you've also used a VM! The VMs powering that site have served over 100,000 demos of VS.NET.

From the beginning, we recognized that VMs were fundamentally different and much more flexible than physical servers. The host's APIs enable programmatic control to manage the virtual servers. The price of this flexibility is additional planning and management of data center operations.

On a virtualization host, servers compete for limited amounts of memory (RAM), processor (CPU), and storage (disk). VS2005 VMs, like physical servers, need sufficient RAM to operate. They block out their full memory footprint on the host. You can, however, release a VM's memory by turning off the VM, which enables you to maintain more VM configurations than you can concurrently run.

These idle virtual images voraciously consume large amounts of disk. This means that a typical host may not have enough space to store many idle 4-10 GB virtual image files. VS2005 partially solves this problem by allowing VMs to chain image files into differencing layers that share a common base image.

The VS2005 differencing layer technology is called differencing disks (undo drives are a variant of differencing disks). This technology enables you to create a base image of the operating system and then install applications into a difference disk layer. A single base image can then be used by several VMs that each have a unique differencing disk.

Virtualization Example
Our sample scenario is a code development and testing environment for a three-tier application. The host server is a dual-processor server with 2GB of RAM and 120GB of RAID 5 disk. The proposed demo application must support both SQL Server and Oracle, each of which requires at least 1GB of RAM for testing. How can we use VS2005 to test the application in all its permutations using only the host server?

Memory is the obvious contention point. Of the available 2GB on the host, one quarter is reserved as overhead for the host operating system and VS2005, leaving just 1.5GB for the three application tiers. Since the databases each require 1GB, the entire application will just barely run on the host. To test both database platforms, we will have to keep one turned off while we are testing the other. Toggling the servers will keep our RAM use within the limits of the host.

Storage is a less obvious but equally serious challenge. Assuming 100GB available of the 120GB total should give ample room to store VM disk files. If we assume 10GB per VM, then we could store 10 VMs. Ten quickly drops to five if we plan to keep one archive copy of each VM.

Differencing disks provide the solution to both these issues. Our database server requires a 4GB Windows 2003 base image and two distinct differencing disks (SQL at 4GB and Oracle at 6GB). Without differencing, the two servers would consume 18GB of disk. Sharing the base image uses just 14, saving 4GB of disk. It is not necessary to archive the shared base because it does not change. We do, however, want to archive each differencing disk. The total storage is 24 GB, down from 36 GB without the use of differencing disks (see Figure 2).

Toggling the VM power states and working with shared base images addresses the resource limitations of the host.

Programming Virtualization Control
To use our testing environment, we must create a small .NET application that toggles between server configurations by changing both the VM's power state and its differencing disk configuration.

The C# sample application will provide the following features:

  1. Create a VM with appropriate components, including differencing and undo drives
  2. Manage the VM's power (Start and Stop)
  3. Change the disk configuration of an existing machine
  4. Simple user interface
This article focuses on key VS2005 interfacing points in the application. The entire program is available online at www.surgient.com/dndjsamplecode.

Before the program can run, it needs a reference for the VS2005 API. VS2005 provides a COM interface and requires a .NET Interop to use it. Visual Studio creates the Interop automatically when we add Microsoft Virtual Server from the COM Components tab from the Tools...Add/Remove Toolbox Items menu. This process will add the using Microsoft.VirtualServer.Interop reference to the code.

In addition to referencing the COM Interop, VS2005 requires COM security to enforce access control. Our sample application includes a dedicated class, COMServices, to provide this critical initialization. Your VS2005 application must include this or similar code. A call to COMServices. Initialize() is all that is needed before we can start using the VS2005 API.

The VS2005 API has two primary categories of functions. The first category controls the virtualization platform on the host, while the second controls states and attributes of individual VMs. The interface to the host is created by instantiating a new VMVirtualServerClass object. Once this object exists, it is possible to create VMVirtualMachine objects by either creating new VMs using CreateVirtualMachineVM or getting a reference to an existing VM using FindVirtualMachine.

The example application calls the host object "vs" for Virtual Server. Here is the code to attach to the host API:

VMVirtualServerClass vs = new VMVirtualServerClass();

Creating a Virtual Machine
The first step in creating a VM is deciding where to store the multigigabyte virtual disk files that store the data of the VM's hard drives. The VS2005 default is to bury the files deep in the Documents and Settings directory tree, which can cause serious issues on systems with multiple partitions as the largest files default to the operating system's partition. Change the default path for VMs from the VS2005 Web interface in the Virtual Server...Server Properties section. The VMs are stored in directories under the default virtual machine configuration folder. In this example, the host will store VMs on the second partition (d:) in the "vms" subdirectory.

Creating a VM is a multistep process. The basic CreateVirtualMachine method only creates a VM stub. The VM's RAM, disk, and network must be configured before it is usable. However, you cannot just attach disk and network to a VM; you must "install" virtual devices before you can attach media to them. Specifically, you must add a network adapter to your VM before you can attach it to the network and you must specify which IDE or SCSI ports you are using when you attach drives.

The first step is to create the VM stub. The application calls the VM object vm. Here is the code requesting the host object to create a VM:

VMVirtualMachine vm = vs.CreateVirtualMachine("vm01","d:\vms\vm01");

With the VM stub, it is possible to configure the VM's properties. Memory is the easiest to configure:

vm.Memory = 256;

Attaching a hard drive requires an existing virtual hard disk (VHD) file. You can use an existing one or create one dynamically. VHD files are configured to a maximum possible size and expand dynamically as data is added. The maximum size is specified in megabytes, so the code sample uses a 1K multiplication to improve readability. Here is how the host object is told to create a VHD file:

vs.CreateDynamicVirtualHardDisk("d:\vms\vm01.vhd", 16 * 1024)

Instead of creating a new disk (shown above), you can add a differencing disk to an existing hard disk. A differencing disk inherits the maximum size from its parent and also stores the parent's location in its header. You must supply both a unique disk name and the parent disk when you create a difference disk:

vs.CreateDifferencingVirtualHardDisk("d:\vms\vm02.vhd","d:\vms\parent.vhd");

Once the disk file exists, it can be attached to the VM by selecting a bus (IDE or SCSI) and the bus address. If the disk is a differencing disk, only the difference disk file is provided for connection. The parent disk is not programmatically connected because the difference disk already has the reference location for its parent disk. In this example, VS2005 will connect the drive at address IDE 0:0:

vm.AddHardDiskConnection("d:\vms\vm01.vhd", VMDriveBusType.vmDriveBusType_IDE, 0, 0);

Undoable mode is an important VS2005 feature because it allows you to maintain a working session for your server. When using undoable drives, you can maintain, commit, or discard the working session. There is minimal performance impact for this feature, and it eliminates the time wasted recovering or rebuilding server environments. Undoable mode is an attribute of the VM and applies to all drives:

vm.undoable = true;

Connecting the new network adapter to the correct host network is more challenging. The result is that the attached adapters are available as a NetworkAdapters array on the VM object. To create the network adapter for the VM:

vm.AddNetworkAdaper();

When installed, VS2005 automatically creates a virtual network for each physical host network interface card (NIC) and an extra "internal" network that can be shared between VMs but is not externally connected. Virtual networks may be created or added from the Web interface in the Virtual Networks section. The host object offers an array of VirtualNetworks. Connect a VM to a network by providing a reference to the desired host network with AttachToVirtualNework method for an adapter:

vm.NetworkAdapters[1].AttachToVirtualNetwork(vs.VirtualNetworks[0]);

Managing VM Power
VS2005 allows absolute control over a VM's power, including a saved state that releases a VM's memory and CPU resources. Suspend is useful because the VM immediately resumes work when restarted, avoiding an operating system reboot.

Basic power management uses the VM's Startup and TurnOff methods. These are not advised for most cases. TurnOff is dangerous because it does not gracefully shutdown, and Startup does not wait for the start before returning control.

To provide a graceful shutdown, the "Virtual Machine Additions" must be installed on the VM's GuestOS - Microsoft's name for the operating system running on the VM. VS2005 prompts you for the Additions in the Web interface. Once the additions are installed, you first check the CanShutdown property from the VM's GuestOS attribute:

If (vm.GuestOS.CanShutown vm.GuestOS.Shutdown();

Waiting for start or shutdown completion requires asynchronous calls to the VS2005 interface. Many VS2005 methods return a VMTask object that can be used to monitor task completion:

VMTask vt = vs.GuestOS.Shutdown();
if (vt !=null) vt.WaitForCompletion(-1);

Going Forward
Programming helps you unlock and automate some of the most powerful features of Microsoft Virtual Server 2005. This article covered key points to consider about using and programming Virtual Server. The complete sample application provides additional context and more features, including switching a VM's differencing disk as discussed in the example scenario. We believe that virtualization technology can radically improve the way you use server capacity and hope this article takes you a step closer to that realization.

More Stories By Rob Hirschfeld

Rob Hirschfeld, cofounder and chief architect at Surgient Inc., is responsible for evolving and driving the architecture of Surgient applications. Rob has 15 years' experience in software design and systems integration with an emphasis on applications and particularly the deployment of distributed, Web-integrated applications. he holds degrees in engineering from Duke University and Louisiana State University.

More Stories By Richard Cardona

Richard Cardona, principal engineer at Surgient Inc., is responsible for providing a platform interface to virtual computing resources. Richard has developed software using virtualizaiton technologies since 1988 in various cross-platform environments and most recently with VMware GSX and ESX, and Microsoft Virtual PC 2004 and Virtual Server using the Microsoft .NET Framework.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
lawrence hordy 01/18/05 01:06:39 PM EST

i see a 3d spreadsheet emulating a 3d array of strings == done in RPG or RPG2 == done IN CALCSTAR for a Z80 with CPM/80
== done in other antique spreadsheets for old operating systems

@ThingsExpo Stories
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have spoken with, or attended presentations from, utilities in the United States, South America, Asia and Europe. This session will provide a look at the CREPE drivers for SmartGrids and the solution spaces used by SmartGrids today and planned for the near future. All organizations can learn from SmartGrid’s use of Predictive Maintenance, Demand Prediction, Cloud, Big Data and Customer-facing Dashboards...
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.