Microsoft Cloud Authors: Elizabeth White, Yeshim Deniz, Serafima Al, Janakiram MSV, John Katrick

Related Topics: Java IoT, Microservices Expo, Microsoft Cloud, Machine Learning , Agile Computing, @DXWorldExpo

Java IoT: Article

Eating Our Own Dog Food – 2x Faster Hadoop MapReduce Jobs

How to analyze and optimize Hadoop jobs beyond just tweaking MapReduce options

For a while now I have been writing about how to analyze and optimize Hadoop jobs beyond just tweaking MapReduce options. The other day I took a look at some of our Outage Analyzer Hadoop jobs and put words into action.

A simple analysis of the Outage Analyzer jobs with Compuware APM 5.5 identified three hotspots and two potential Hadoop problems in one of our biggest jobs. It took the responsible developer a couple of hours to fix it and the result is a 2x improvement overall and a 6x improvement on the Reduce part of the job. Let's see how we achieved that.

About Outage Analyzer
Outage Analyzer is a free service provided by Compuware that displays in real-time any availability problems with the most popular third-party content providers on the Internet. It's available at http://www.outageanalyzer.com. It uses real time analytical process technologies to do anomaly detection and event correlation and classification. It stores billions of measures taken from Compuware's global testing network every day in Hadoop and runs different MapReduce jobs to analyze the data. I examined the performance of these MapReduce jobs.

Identifying Worthwhile Jobs to Analyze
The first thing I did was look for a worthwhile job to analyze. To do this, I looked at cluster utilization broken down by user and job.

This chart visualizes the cluster CPU usage by user giving a good indication about which user executes the most expensive jobs

What I found was that John was the biggest user of our cluster. So I looked at the jobs John was running.

These are all the jobs that John was running over the last several days. It's always the same one, consuming about the same amount of resources

The largest job by far was an analytics simulation of a full day of measurement data. This job is run often to test and tune changes to the analytics algorithms. Except for one of the runs, all of them lasted about 6.5 hours in real time and consumed nearly 100% CPU of the cluster during that time. This looked like a worthy candidate for further analysis.

Identifying Which Job Phase to Focus On
My next step was to look at a breakdown of the job from two angles: consumption and real time. From a real-time perspective, map and reduce took about the same amount of time - roughly 3 hours each. This could also be nicely seen in the resource usage of the job.

This dashboard shows the overall cluster utilization during the time the job ran. 100% of the cluster CPU is used during most of the time

The significant drop in Load Average and the smaller drop in the other charts mark the end of the mapping phase and the start of pure reducing. What is immediately obvious is that the reducing phase, while lasting about the same time, does not consume as many resources as the map phase. The Load Average is significantly lower and the CPU utilization drops in several steps before the job is finished.

On the one hand that is because we have a priority scheduler and reducing does not use all slots, but more important, reducing cannot be parallelized as much as mapping. Every optimization here counts twofold, because you cannot scale things away. While the mapping phase is clearly consuming more resources, the reducing phase is a bottleneck and might therefore benefit even more from optimization.

The breakdown of job phase times shows that the mapping phase consumes twice as much time as reducing, even though we know that the job real time of the two phases is about the same - 3 hours each

As we can see the Map Time (time we spend in the mapping function, excluding merging, spilling and combining) is twice as high as the reduce time. The reduce time here represents the time that tasks were actually spending in the reduce function, excluding shuffle and merge time (which is represented separately). As such those two times represent those portions of the job that are directly impacted by the Map and Reduce code, which is usually custom code - and therefore tuneable by our developers.

Analyzing Map and Reduce Performance
As a next step I used Compuware APM to get a high-level performance breakdown of the job's respective 3 hour mapping and reducing phases. A single click gave me this pretty clear picture of the mapping phase:

This is a hot spot analysis of our 3 hour mapping phase which ran across 10 servers in our hadoop cluster

The hot spot dashboard for the mapping phase shows that we spent the majority of the time (about 70%) in our own code and that it's about 50% CPU time. This indicates a lot of potential for improvement. Next, I looked at the reducing phase.

This hot spot shows that we spend nearly all of our reducing time in all reduce tasks in our own code.

This shows that 99% of the reducing time is spent on our own code and not in any Hadoop framework. Since the reduce phase was clearly the winner in terms of potential, I looked at the details of that hot spot - and immediately found three hot spots that were responsible for the majority of the reduce time.

Three Simple Code Issues Consume 70% of the Reduce Time
This is what the method hot spots dashboard for the reduce phase showed.

These are the method hot spots for the reduce phase, showing that nearly everything is down to only three line items

The top three items in the method hot spot told me everything I needed know. As it turned out nearly all other items listed were sub-hotspots of the top most method:

  1. SimpleDateFormat initialization:
    The five items marked in red are all due to the creation of a SimpleDateFormat object. As most of us find out very painfully during our early career as a Java developer, the SimpleDateFormat is not thread safe and cannot be used as a static variable easily. This is why the developer chose the easiest route and created a new one for every call, leading to about 1.5 billion creations of this object. The initialization of the Formatter is actually very expensive and involves resource lookups, locale lookups and time calculations (seen in the separate line items listed here). This item alone consumed about 40% of our reduce time.
    Solution: We chose to use the well-known Joda framework (the code replacement was easy) and made the Formatter a static final variable; totally removing this big hot spot from the equation.
  2. Regular Expression Matching (line two in the picture)
    In order to split the CSV input we were using java.lang.String.split. It is often forgotten that this method uses regular expressions underneath. RegEx is rather CPU intensive and overkill for such a simple job. This was consuming another 15-20% of the allotted CPU time.
    Solution: We changed this to a simple string tokenizer.
  3. Exception throwing (line three in the picture)
    This example was especially interesting. During the reading of input data we are parsing numeric values, and if the field is not a correct number java.lang.Long.parseLong will throw a NumberFormatException. Our code would catch it, mark the field as invalid and ignore the exception. The fact is that nearly every input record in that feed has an invalid field or an empty field that should contain a number. Throwing this exception billions of times consumed another 10% of our CPU time.
    Solution: We changed the code in a way to avoid the exception altogether.

There we have it - three simple hot spots were consuming about 70% of our reduce CPU time. During analysis of the mapping portion I found the same hot spots again, where they contributed about 20-30% to the CPU time.

I sent this analysis to the developer and we decided to eat our own dog food, fix it and rerun the job to analyze the changes.

Job Done in Half the Time - Sixfold Improvement in Reduce Time
The result of the modified code exceeded our expectations by quite a bit. The immediate changes saw the job time reduced by 50%. Instead of lasting about 6.5 hours, it was done after 3.5. Even more impressive was that while the mapping time only went down by about 15%, the reducing time was slashed from 3 hours to 30 minutes.

This is the jobs cluster CPU Usage and Load Average after we made the changes

The Cluster Utilization shows a very clear picture. The overall utilization and load average during mapping phase actually increased a bit and instead of lasting 3 hours 10 minutes it was done after 2 hours and 40 minutes. While not huge this is still a 15% improvement.

The reduce phase on the other hand shrank dramatically: from roughly 3 hours to 30 minutes. That means a couple of hours of development work lead to an impressive sixfold performance improvement. We also see that the reduce phase is of course still not utilizing the whole cluster and it's actually the 100% phase that got a lot shorter.

Three simple code fixes resulted in a 100% improvement of our biggest job and a sixfold speedup of the reduce portion. Suffice it to say that this totally surprised the owners of the job. The job was utilizing 100% of the cluster, which for them meant that from a Hadoop perspective things were running in an optimal fashion. While this is true, it doesn't mean that the job itself is efficient.

This example shows that optimizing MapReduce jobs beyond tinkering with Hadoop options can lead to a lot more efficiency without adding any more hardware - achieving the same result with fewer resources.

The Hotspot analysis did also reveal some Hadoop-specific hotspots that led us to change some job options and speed things up even more. More on that in my next blog.

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
"There's plenty of bandwidth out there but it's never in the right place. So what Cedexis does is uses data to work out the best pathways to get data from the origin to the person who wants to get it," explained Simon Jones, Evangelist and Head of Marketing at Cedexis, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial C...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term.
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
With privacy often voiced as the primary concern when using cloud based services, SyncriBox was designed to ensure that the software remains completely under the customer's control. Having both the source and destination files remain under the user?s control, there are no privacy or security issues. Since files are synchronized using Syncrify Server, no third party ever sees these files.
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
In his session at 21st Cloud Expo, Carl J. Levine, Senior Technical Evangelist for NS1, will objectively discuss how DNS is used to solve Digital Transformation challenges in large SaaS applications, CDNs, AdTech platforms, and other demanding use cases. Carl J. Levine is the Senior Technical Evangelist for NS1. A veteran of the Internet Infrastructure space, he has over a decade of experience with startups, networking protocols and Internet infrastructure, combined with the unique ability to it...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, shared examples from a wide range of industries – including en...
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
delaPlex is a global technology and software development solutions and consulting provider, deeply committed to helping companies drive growth, revenue and marketplace value. Since 2008, delaPlex's objective has been to be a trusted advisor to its clients. By redefining the outsourcing industry's business model, the innovative delaPlex Agile Business Framework brings an unmatched alliance of industry experts, across industries and functional skillsets, to clients anywhere around the world.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Headquartered in Plainsboro, NJ, Synametrics Technologies has provided IT professionals and computer systems developers since 1997. Based on the success of their initial product offerings (WinSQL and DeltaCopy), the company continues to create and hone innovative products that help its customers get more from their computer applications, databases and infrastructure. To date, over one million users around the world have chosen Synametrics solutions to help power their accelerated business or per...