Welcome!

Microsoft Cloud Authors: John Basso, Liz McMillan, Pat Romanski, Glenn Rossman, Elizabeth White

News Feed Item

Fujitsu Develops Compact, High-Performance and Energy-Efficient DSP for Mobile Device Baseband Processing

Leverages supercomputer technology to lower energy requirements for smartphones and other wireless mobile devices

Kawasaki, Japan, Feb 1, 2013 - (JCN Newswire) - Fujitsu Laboratories Limited today announced the development of a digital signal processor (DSP) for use in mobile device baseband processing. By employing a vector processing architecture(1) as used in supercomputers, the DSP can efficiently run highly repetitive processes common in LTE(2) and other wireless processes. This, in turn, allows for greater energy efficiency.

By using 28-nanometer (nm) process technology and when running at 250 MHz, DSP is capable of processing data at 12 GOPS (12 billion operations per second). Excluding memory, the DSP measures only 0.4 mm2, and it consumes only 30 milliwatts (mW) of power, 20% less than existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile devices. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Details of the new technology will be presented at the 2013 International Symposium on VLSI Design, Automation and Test (2013 VLSI-DAT), scheduled to open on April 22 in Taiwan.

Background

In recent years, smartphones, tablets, and other wireless devices have rapidly gained in popularity. As the speed of wireless networks increase, manufacturers have launched models that support new wireless communications standards such as LTE, which is currently being rolled out worldwide, in addition to conventional standards such as GSM and 3G. To support these wireless standards, a signal processing circuit (baseband processor) compliant with each computation is required. As a result, being able to reduce the size and power consumption of baseband processor components is crucial to improving the cost and battery life of devices.

Technological Challenges

Typical baseband processing circuits are implemented using specialized hardware to support each communications standard, requiring a number of circuits to support different standards. Consequently, reducing the size of circuits has proved challenging. On the other hand, there exist alternative software-based approaches to supporting each communications standards using DSPs. Given the massive signal processing requirements of LTE, however, these approaches are limited in their ability to simultaneously achieve both high processing performance and low energy consumption.

Newly Developed Technology

Fujitsu Laboratories has developed a new DSP that employs a vector processing architecture used in supercomputers. The DSP can efficiently run highly repetitive processes that are common in LTE and other wireless processes, thereby achieving greater energy efficiency.

Key features of the newly developed DSP are as follows:

1) Vector processing architecture

The DSP employs a vector architecture found in supercomputers. With a typical processor, a single instruction will be executed on a single piece of data at a time (scalar data). By contrast, a vector processor will execute a single instruction on multiple pieces of data (vector data) at a time. As a result, when repeating the same process for multiple data elements, the ability of the vector architecture to complete a task with a single instruction makes it possible to cut down on the amount of processing and energy required to read and decode instructions from the memory.

LTE uses the OFDM(3) modulation method and communicates by bundling data that is carried by up to 1,200 "subcarriers" in a wireless signal. To extract information from an incoming signal, the DSP must apply the same process repeatedly for each subcarrier. This makes the vector approach more effective.

Figure 1 shows a block diagram of the newly developed DSP. The DSP consists of a vector engine, which employs a vector architecture, as well as a conventional CPU. The CPU reads in program code from the instruction memory, decodes the instruction, and if the vector approach is suitable for use on the instruction, it is transferred to the vector engine where it is executed. Other instructions are executed in the CPU as usual.

2) Vector engine optimized for baseband processing

Figure 2 shows an internal diagram of the vector engine itself. Instructions transferred from the CPU are stored in the instruction buffer. Stored instructions are decoded one by one by the sequencer, and the required vector processing pipeline(4) is controlled to execute the instruction. The number of vector data (vector length) that can be calculated in a single instruction is 64 data elements, a value optimized for use in mobile device baseband processing. Rather than processing 64 data elements sequentially, eight parallel processing elements process the data in eight rounds, thereby achieving higher speeds.

The vector engine features a small circuit size, and to increase the efficiency of baseband processing, there are two pipelines for processing multiply instructions on vector data, and there are also two pipelines for processing load instructions (or conversely, store instructions) that load vector data to the register file, which temporarily stores data from memory, for a total of four pipelines. All four pipelines can process addition, subtraction, and logic operations on vector data.

Results

With the addition of the newly developed vector engine, many pieces of data can be processed with a single instruction, thereby enabling more efficient data processing. This, in turn, will significantly contribute to reduced energy consumption in wireless baseband LSIs. A DSP using 28nm process technology and running at 250 MHz is able to process 12 GOPS (12 billion operations per second). Fujitsu Laboratories succeeded in developing a compact DSP that measures only 0.4 mm2 (without memory) and, in terms of power consumption, requires only 30mW - a 20% improvement over existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile phones. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Future Development

The new DSP will be incorporated into a communications processor from Access Network Technology Limited that is scheduled for use in Fujitsu smartphones and elsewhere. Going forward, Fujitsu Laboratories plans to continue making performance improvements to the processor to enable it to keep pace with advances in higher speed wireless communications standards.

(1) Vector processing architecture: A processor architecture for processing calculations on vector data (a one-dimensional array of data) with a single instruction.
(2) Long Term Evolution (LTE): The name of the latest mobile communications standard for wireless devices.
(3) Orthogonal Frequency-Division Multiplexing (OFDM): A wireless modulation encoding used also in wireless LANs.
(4) Processing pipeline: A circuit that executes an arithmetic process according to an instruction. By dividing execution into multiple stages, the calculation is executed according to a workflow process.

For further details with diagrams, please visit www.fujitsu.com/global/news/pr/archives/month/2013/20130201-04.html.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259


Copyright 2013 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
ReadyTalk has expanded the capabilities of the FoxDen collaboration platform announced late last year to include FoxDen Connect, an in-room video collaboration experience that launches with a single touch. With FoxDen Connect, users can now not only engage in HD video conferencing between iOS and Android mobile devices or Chrome browsers, but also set up in-person meeting rooms for video interactions. A host’s mobile device automatically recognizes the presence of a meeting room via beacon tech...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
On Dice.com, the number of job postings asking for skill in Amazon Web Services increased 76 percent between June 2015 and June 2016. Salesforce.com saw its own skill mentions increase 37 percent, while DevOps and Cloud rose 35 percent and 28 percent, respectively. Even as they expand their presence in the cloud, companies are also looking for tech professionals who can manage projects, crunch data, and figure out how to make systems run more autonomously. Mentions of ‘data science’ as a skill ...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
Big Data, cloud, analytics, contextual information, wearable tech, sensors, mobility, and WebRTC: together, these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at @ThingsExpo, Erik Perotti, Senior Manager of New Ventures on Plantronics’ Innovation team, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it ...
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, explained how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
“delaPlex Software provides software outsourcing services. We have a hybrid model where we have onshore developers and project managers that we can place anywhere in the U.S. or in Europe,” explained Manish Sachdeva, CEO at delaPlex Software, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
The IoT is changing the way enterprises conduct business. In his session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, discussed how businesses can gain an edge over competitors by empowering consumers to take control through IoT. He cited examples such as a Washington, D.C.-based sports club that leveraged IoT and the cloud to develop a comprehensive booking system. He also highlighted how IoT can revitalize and restore outdated business models, making them profitable ...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
We all know the latest numbers: Gartner, Inc. forecasts that 6.4 billion connected things will be in use worldwide in 2016, up 30 percent from last year, and will reach 20.8 billion by 2020. We're rapidly approaching a data production of 40 zettabytes a day – more than we can every physically store, and exabytes and yottabytes are just around the corner. For many that’s a good sign, as data has been proven to equal money – IF it’s ingested, integrated, and analyzed fast enough. Without real-ti...