Welcome!

.NET Authors: Elizabeth White, Pat Romanski, ChandraShekar Dattatreya, Trevor Parsons, Peter Silva

News Feed Item

Wireless Sensor Networks 2012-2022

NEW YORK, Dec. 18, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Wireless Sensor Networks 2012-2022

http://www.reportlinker.com/p0184196/Wireless-Sensor-Networks-2012-2022....

The WSN business is set to become a multibillion dollar activity but only if there is major progress with standards and technology. This techno-marketing report scopes over 140 manufacturers and developers and looks closely at the impediments to rollout and how to overcome them. For example, today's power sources often stand in way of the desired 20 year life so the report looks closely at how energy harvesting can help and profiles 40 relevant power source manufacturers. Ten year WSN forecasts are made based on the very latest information.

Wireless Sensor Networks (WSN) - self organising, self healing networks of small "nodes" - have huge potential across industrial, military and many other sectors. While appreciable sales have new been established, major progress depends on standards and achieving twenty year life.

The new IDTechEx report "Wireless Sensor Networks 2012-2022" draws lessons from many successful installations in the last year. It looks at the complex standards scene with particular focus on WirelessHART that is the key to applications in the process industries in the short and medium term and it shows how the alternative ISA 11.11a has some way to go but may prove useful over a wider field of application and eventually subsume WirelessHART. It examines recent successes of the various backers of ZigBee-related solutions, who is behind the alternatives and how they see the future.

The challenge of excessive power consumption of these nodes, that have to act as both tags and readers, is addressed. For example, progress has been good in getting the electronics to consume less electricity, by both improved signalling protocols and improved circuitry.

As for batteries, lithium thionyl chloride single-use versions have twenty year life in certain circumstances but, for many applications, energy harvesting supplying rechargeable batteries is more attractive. That said, where is the rechargeable battery guaranteed for 20 years in use? What are the most promising battery technologies coming available in the next ten years? What are the alternatives to batteries? Which of the favourite energy harvesting technologies should be used - photovoltaic, electrodynamic, thermoelectric or piezoelectric? When are they usable in combinations and what are the results so far? Which applicational sectors of WSN have the most potential and what lies in the way for each?

The new report addresses these issues and provides a wealth of analysis of WSN projects and development programmes including the creating of improved WSN components, plus profiles of many suppliers, governments, standards bodies and investors. Benchmark your success and failure and optimise your future approach based on measured evidence. It is all here.

1. EXECUTIVE SUMMARY AND CONCLUSIONS

1.1. Replacing wired sensor systems

1.2. What is a mesh network?

1.3. The basic mesh network

1.4. IDTechEx forecasts

1.5. Node price trends.

1.6. IDTechEx forecast for 2032

1.7. Three generations of active RFID

1.8. Why the USA is ahead

1.9. Power for tags

1.10. Trend towards multiple energy harvesting

2. INTRODUCTION

2.1. Active vs passive RFID

2.2. Three generations of active RFID

2.3. Second Generation is RTLS

2.4. Third Generation is WSN

2.4.1. Managing chaos and imperfection

2.4.2. The whole is much greater than the parts

2.4.3. Achilles heel - power

2.4.4. View from UCLA

2.4.5. View of Institute of Electronics, Information and Communication Engineers

2.4.6. View of the International Telecommunications Union

2.4.7. View of the Kelvin Institute

2.4.8. Contrast with other short range radio

2.4.9. A practical proposition

2.4.10. Wireless mesh network structure

2.5. Three waves of adoption

2.5.1. WSN leads RTLS

2.5.2. Subsuming earlier forms of active RFID?

2.6. Ubiquitous Sensor Networks (USN) and TIP

2.7. Defining features of the three generations

2.8. WSN paybacks

2.9. Supply chain of the future

3. PHYSICAL STRUCTURE, SOFTWARE AND PROTOCOLS

3.1. Physical network structure

3.2. Power management

3.2.1. Power Management of mesh networks

3.3. Operating systems and signalling protocols

3.3.1. Standards still a problem

3.3.2. WSN as part of overall physical layer standards

3.3.3. Why not use ZigBee IEEE 802.15.4?

3.3.4. Protocol structure of ZigBee

3.3.5. IP for Smart Objects Alliance

3.3.6. WirelessHART, Hart Communication Foundation

3.3.7. ISA100.11a

3.3.8. IEEE 802.15.4a to the rescue?

3.3.9. 6lowpan and TinyOS

3.3.10. Associated technologies and protocols

3.3.11. ISA SP100

3.3.12. ISO/IEC 14543-3-10

3.4. Dedicated database systems

3.5. Programming language nesC / JAVA

4. ACTUAL AND POTENTIAL WSN APPLICATIONS

4.1. General

4.2. Precursors of WSN

4.3. Intelligent buildings

4.3.1. WSN in buildings

4.3.2. Self-Powered Wireless Keycard Switch Unlocks Hotel Energy Savings

4.4. Military and Homeland Security

4.5. Oil and gas

4.5.1. EnerPak harvesting power management for wireless sensors

4.6. Healthcare

4.7. Farming

4.8. Environment monitoring

4.9. Transport and logistics

4.10. Aircraft

5. EXAMPLES OF DEVELOPERS AND THEIR PROJECTS

5.1. Geographical distribution of WSN practitioners and users

5.2. Profiles of 142 WSN suppliers and developers

5.3. Ambient Systems

5.3.1. Introduction

5.3.2. How Ambient Product Series 3000 works

5.3.3. The power of local intelligence: Dynamic Event Reporting

5.3.4. How SmartPoints communicate with the Ambient wireless infrastructure

5.3.5. Ambient Wireless Infrastructure - The power of wireless mesh networks

5.3.6. Ambient network protocol stack

5.3.7. Rapid Reader for high-volume data communication

5.3.8. Ambient Studio: Managing Ambient wireless networks

5.3.9. Comparing Ambient to wireless sensor networks (including ZigBee)

5.3.10. Comparing Ambient to active RFID and Real Time Locating Systems

5.4. Arch Rock

5.5. Auto-ID Labs Korea/ ITRI

5.6. Berkeley WEBS

5.6.1. Epic

5.6.2. SPOT - Scalable Power Observation Tool

5.7. Chungbuk National University Korea

5.8. Dust Networks

5.8.1. Smart Dust components

5.8.2. Examples of benefits

5.8.3. KV Pharmaceuticals

5.8.4. Milford Power

5.8.5. Fisher BioServices

5.8.6. PPG

5.8.7. Wheeling Pittsburgh Steel

5.8.8. SmartMesh Standards

5.8.9. US DOE project

5.9. Crossbow Technology

5.10. Emerson Process Management

5.10.1. Grane offshore oil platform

5.11. GE Global Research

5.12. Holst Research Centre IMEC - Cornell University

5.12.1. Body area networks for healthcare

5.13. Intel

5.14. Kelvin Institute

5.15. Laboratory for Assisted Cognition Environments LACE

5.16. Millennial Net

5.17. Motorola

5.18. National Information Society Agency

5.18.1. The vision for Korea

5.18.2. First trials

5.18.3. Seawater - oxygen, temperature

5.18.4. Setting concrete - temperature, humidity

5.18.5. Greenhouse microclimate - temperature, humidity

5.18.6. Hospital - blood temperature, drug temp and humidity

5.18.7. Recent trials

5.18.8. Program of future work

5.19. National Instruments WSN platform

5.20. Newtrax Technologies

5.20.1. Canadian military

5.20.2. Decentralised architecture

5.20.3. Inexpensive and expendable sensors

5.21. TelepathX

5.22. University of California Los Angeles CENS

5.23. University of Virginia NEST

5.23.1. NEST: Network of embedded systems

5.23.2. Technical overview

5.23.3. Programming paradigm

5.23.4. Feedback control resource management

5.23.5. Aggregate QoS management and local routing

5.23.6. Event/landmark addressable communication

5.23.7. Team formation

5.23.8. Microcell management

5.23.9. Local services

5.23.10. Information caching

5.23.11. Clock synchronization and group membership

5.23.12. Distributed control and location services

5.23.13. Testing tools and monitoring services

5.23.14. Software release: VigilNet

5.24. Wavenis and Essensium

5.24.1. Essensium's WSN product vision

5.24.2. Fusion of WSN, conventional RFID, RTLS and low power System on Chip integration

5.24.3. Concurrent skill sets to be applied

5.24.4. Integration with end customer.

6. POWER FOR TAGS

6.1. Batteries

6.1.1. Customised and AAA / AA batteries

6.1.2. Planar Energy Devices

6.1.3. AlwaysReady Smart NanoBattery

6.1.4. Energy storage of batteries in standard and laminar formats

6.1.5. Future options for highest energy density

6.2. Laminar fuel cells

6.2.1. Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate

6.3. Energy Harvesting

6.3.1. Energy harvesting with rechargeable batteries

6.3.2. Energy harvesting WSN at SNCF France

6.3.3. Photovoltaics

6.3.4. Battery free energy harvesting

6.3.5. Thermoelectrics in inaccessible places

6.3.6. Other options

6.3.7. Wireless sensor network powered by trees

6.4. Field delivery of power

7. IMPEDIMENTS TO ROLLOUT OF WSN

7.1. Concerns about privacy and radiation

7.2. Reluctance

7.3. Competing standards and proprietary systems

7.4. Lack of education

7.5. Technology improvement and cost reduction needed

7.5.1. Error prone

7.5.2. Scalability

7.5.3. Sensors

7.5.4. Locating Position

7.5.5. Spectrum congestion and handling huge amounts of data

7.5.6. Optimal routing, global directories, service discovery

7.6. Niche markets lead to first success

8. MARKETS 2010-2022

8.1. Background

8.2. History and forecasts

8.2.1. IDTechEx forecasts 2010-2022

8.2.2. IDTechEx forecast for 2032

8.2.3. Market and technology roadmap to 2032

8.2.4. The overall markets for ZigBee and wireless sensing.

9. 42 PROFILES OF RELEVANT POWER SOURCE SUPPLIERS AND DEVELOPERS

9.1. A123 Systems

9.2. Advanced Battery Technologies

9.3. Altairnano

9.4. BASF - Sion

9.4.1. BASF licenses Argonne Lab's cathode material

9.5. BYD

9.5.1. Volkswagen

9.5.2. Car superlatives

9.5.3. Plans for the USA

9.6. CapXX

9.7. Celxpert

9.8. China BAK

9.9. Cymbet

9.10. Duracell

9.11. Electrovaya

9.12. Enerize USA and Fife Batteries UK

9.13. Front Edge

9.14. Furukawa

9.15. Harvard

9.16. Hitachi Maxell

9.17. Holst

9.18. IBM

9.19. Infinite Power Solutions

9.20. Kokam America

9.21. LGChem

9.22. Microsemi

9.23. MIT

9.24. National Renewable

9.25. NEC

9.26. Nippon Chemi-Con Japan

9.27. Oak Ridge

9.28. Panasonic (formerly Matsushita, now owns Sanyo)

9.29. PolyPlus Battery

9.30. Planar

9.31. Renata

9.32. ReVolt

9.33. Saft

9.34. Sandia

9.35. Solicore

9.36. Superlattice

9.37. Tadiran

9.38. Tech Univ Berlin

9.39. Toshiba

9.40. Sony

9.41. Univ Calif

9.42. Virtual Extension

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY

APPENDIX 2: GLOSSARY

To order this report:

: Wireless Sensor Networks 2012-2022

Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.