Welcome!

.NET Authors: Lori MacVittie, Yeshim Deniz, Ivan Antsipau, Liz McMillan, Michael Bushong

News Feed Item

Wireless Sensor Networks 2012-2022

NEW YORK, Dec. 18, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Wireless Sensor Networks 2012-2022

http://www.reportlinker.com/p0184196/Wireless-Sensor-Networks-2012-2022....

The WSN business is set to become a multibillion dollar activity but only if there is major progress with standards and technology. This techno-marketing report scopes over 140 manufacturers and developers and looks closely at the impediments to rollout and how to overcome them. For example, today's power sources often stand in way of the desired 20 year life so the report looks closely at how energy harvesting can help and profiles 40 relevant power source manufacturers. Ten year WSN forecasts are made based on the very latest information.

Wireless Sensor Networks (WSN) - self organising, self healing networks of small "nodes" - have huge potential across industrial, military and many other sectors. While appreciable sales have new been established, major progress depends on standards and achieving twenty year life.

The new IDTechEx report "Wireless Sensor Networks 2012-2022" draws lessons from many successful installations in the last year. It looks at the complex standards scene with particular focus on WirelessHART that is the key to applications in the process industries in the short and medium term and it shows how the alternative ISA 11.11a has some way to go but may prove useful over a wider field of application and eventually subsume WirelessHART. It examines recent successes of the various backers of ZigBee-related solutions, who is behind the alternatives and how they see the future.

The challenge of excessive power consumption of these nodes, that have to act as both tags and readers, is addressed. For example, progress has been good in getting the electronics to consume less electricity, by both improved signalling protocols and improved circuitry.

As for batteries, lithium thionyl chloride single-use versions have twenty year life in certain circumstances but, for many applications, energy harvesting supplying rechargeable batteries is more attractive. That said, where is the rechargeable battery guaranteed for 20 years in use? What are the most promising battery technologies coming available in the next ten years? What are the alternatives to batteries? Which of the favourite energy harvesting technologies should be used - photovoltaic, electrodynamic, thermoelectric or piezoelectric? When are they usable in combinations and what are the results so far? Which applicational sectors of WSN have the most potential and what lies in the way for each?

The new report addresses these issues and provides a wealth of analysis of WSN projects and development programmes including the creating of improved WSN components, plus profiles of many suppliers, governments, standards bodies and investors. Benchmark your success and failure and optimise your future approach based on measured evidence. It is all here.

1. EXECUTIVE SUMMARY AND CONCLUSIONS

1.1. Replacing wired sensor systems

1.2. What is a mesh network?

1.3. The basic mesh network

1.4. IDTechEx forecasts

1.5. Node price trends.

1.6. IDTechEx forecast for 2032

1.7. Three generations of active RFID

1.8. Why the USA is ahead

1.9. Power for tags

1.10. Trend towards multiple energy harvesting

2. INTRODUCTION

2.1. Active vs passive RFID

2.2. Three generations of active RFID

2.3. Second Generation is RTLS

2.4. Third Generation is WSN

2.4.1. Managing chaos and imperfection

2.4.2. The whole is much greater than the parts

2.4.3. Achilles heel - power

2.4.4. View from UCLA

2.4.5. View of Institute of Electronics, Information and Communication Engineers

2.4.6. View of the International Telecommunications Union

2.4.7. View of the Kelvin Institute

2.4.8. Contrast with other short range radio

2.4.9. A practical proposition

2.4.10. Wireless mesh network structure

2.5. Three waves of adoption

2.5.1. WSN leads RTLS

2.5.2. Subsuming earlier forms of active RFID?

2.6. Ubiquitous Sensor Networks (USN) and TIP

2.7. Defining features of the three generations

2.8. WSN paybacks

2.9. Supply chain of the future

3. PHYSICAL STRUCTURE, SOFTWARE AND PROTOCOLS

3.1. Physical network structure

3.2. Power management

3.2.1. Power Management of mesh networks

3.3. Operating systems and signalling protocols

3.3.1. Standards still a problem

3.3.2. WSN as part of overall physical layer standards

3.3.3. Why not use ZigBee IEEE 802.15.4?

3.3.4. Protocol structure of ZigBee

3.3.5. IP for Smart Objects Alliance

3.3.6. WirelessHART, Hart Communication Foundation

3.3.7. ISA100.11a

3.3.8. IEEE 802.15.4a to the rescue?

3.3.9. 6lowpan and TinyOS

3.3.10. Associated technologies and protocols

3.3.11. ISA SP100

3.3.12. ISO/IEC 14543-3-10

3.4. Dedicated database systems

3.5. Programming language nesC / JAVA

4. ACTUAL AND POTENTIAL WSN APPLICATIONS

4.1. General

4.2. Precursors of WSN

4.3. Intelligent buildings

4.3.1. WSN in buildings

4.3.2. Self-Powered Wireless Keycard Switch Unlocks Hotel Energy Savings

4.4. Military and Homeland Security

4.5. Oil and gas

4.5.1. EnerPak harvesting power management for wireless sensors

4.6. Healthcare

4.7. Farming

4.8. Environment monitoring

4.9. Transport and logistics

4.10. Aircraft

5. EXAMPLES OF DEVELOPERS AND THEIR PROJECTS

5.1. Geographical distribution of WSN practitioners and users

5.2. Profiles of 142 WSN suppliers and developers

5.3. Ambient Systems

5.3.1. Introduction

5.3.2. How Ambient Product Series 3000 works

5.3.3. The power of local intelligence: Dynamic Event Reporting

5.3.4. How SmartPoints communicate with the Ambient wireless infrastructure

5.3.5. Ambient Wireless Infrastructure - The power of wireless mesh networks

5.3.6. Ambient network protocol stack

5.3.7. Rapid Reader for high-volume data communication

5.3.8. Ambient Studio: Managing Ambient wireless networks

5.3.9. Comparing Ambient to wireless sensor networks (including ZigBee)

5.3.10. Comparing Ambient to active RFID and Real Time Locating Systems

5.4. Arch Rock

5.5. Auto-ID Labs Korea/ ITRI

5.6. Berkeley WEBS

5.6.1. Epic

5.6.2. SPOT - Scalable Power Observation Tool

5.7. Chungbuk National University Korea

5.8. Dust Networks

5.8.1. Smart Dust components

5.8.2. Examples of benefits

5.8.3. KV Pharmaceuticals

5.8.4. Milford Power

5.8.5. Fisher BioServices

5.8.6. PPG

5.8.7. Wheeling Pittsburgh Steel

5.8.8. SmartMesh Standards

5.8.9. US DOE project

5.9. Crossbow Technology

5.10. Emerson Process Management

5.10.1. Grane offshore oil platform

5.11. GE Global Research

5.12. Holst Research Centre IMEC - Cornell University

5.12.1. Body area networks for healthcare

5.13. Intel

5.14. Kelvin Institute

5.15. Laboratory for Assisted Cognition Environments LACE

5.16. Millennial Net

5.17. Motorola

5.18. National Information Society Agency

5.18.1. The vision for Korea

5.18.2. First trials

5.18.3. Seawater - oxygen, temperature

5.18.4. Setting concrete - temperature, humidity

5.18.5. Greenhouse microclimate - temperature, humidity

5.18.6. Hospital - blood temperature, drug temp and humidity

5.18.7. Recent trials

5.18.8. Program of future work

5.19. National Instruments WSN platform

5.20. Newtrax Technologies

5.20.1. Canadian military

5.20.2. Decentralised architecture

5.20.3. Inexpensive and expendable sensors

5.21. TelepathX

5.22. University of California Los Angeles CENS

5.23. University of Virginia NEST

5.23.1. NEST: Network of embedded systems

5.23.2. Technical overview

5.23.3. Programming paradigm

5.23.4. Feedback control resource management

5.23.5. Aggregate QoS management and local routing

5.23.6. Event/landmark addressable communication

5.23.7. Team formation

5.23.8. Microcell management

5.23.9. Local services

5.23.10. Information caching

5.23.11. Clock synchronization and group membership

5.23.12. Distributed control and location services

5.23.13. Testing tools and monitoring services

5.23.14. Software release: VigilNet

5.24. Wavenis and Essensium

5.24.1. Essensium's WSN product vision

5.24.2. Fusion of WSN, conventional RFID, RTLS and low power System on Chip integration

5.24.3. Concurrent skill sets to be applied

5.24.4. Integration with end customer.

6. POWER FOR TAGS

6.1. Batteries

6.1.1. Customised and AAA / AA batteries

6.1.2. Planar Energy Devices

6.1.3. AlwaysReady Smart NanoBattery

6.1.4. Energy storage of batteries in standard and laminar formats

6.1.5. Future options for highest energy density

6.2. Laminar fuel cells

6.2.1. Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate

6.3. Energy Harvesting

6.3.1. Energy harvesting with rechargeable batteries

6.3.2. Energy harvesting WSN at SNCF France

6.3.3. Photovoltaics

6.3.4. Battery free energy harvesting

6.3.5. Thermoelectrics in inaccessible places

6.3.6. Other options

6.3.7. Wireless sensor network powered by trees

6.4. Field delivery of power

7. IMPEDIMENTS TO ROLLOUT OF WSN

7.1. Concerns about privacy and radiation

7.2. Reluctance

7.3. Competing standards and proprietary systems

7.4. Lack of education

7.5. Technology improvement and cost reduction needed

7.5.1. Error prone

7.5.2. Scalability

7.5.3. Sensors

7.5.4. Locating Position

7.5.5. Spectrum congestion and handling huge amounts of data

7.5.6. Optimal routing, global directories, service discovery

7.6. Niche markets lead to first success

8. MARKETS 2010-2022

8.1. Background

8.2. History and forecasts

8.2.1. IDTechEx forecasts 2010-2022

8.2.2. IDTechEx forecast for 2032

8.2.3. Market and technology roadmap to 2032

8.2.4. The overall markets for ZigBee and wireless sensing.

9. 42 PROFILES OF RELEVANT POWER SOURCE SUPPLIERS AND DEVELOPERS

9.1. A123 Systems

9.2. Advanced Battery Technologies

9.3. Altairnano

9.4. BASF - Sion

9.4.1. BASF licenses Argonne Lab's cathode material

9.5. BYD

9.5.1. Volkswagen

9.5.2. Car superlatives

9.5.3. Plans for the USA

9.6. CapXX

9.7. Celxpert

9.8. China BAK

9.9. Cymbet

9.10. Duracell

9.11. Electrovaya

9.12. Enerize USA and Fife Batteries UK

9.13. Front Edge

9.14. Furukawa

9.15. Harvard

9.16. Hitachi Maxell

9.17. Holst

9.18. IBM

9.19. Infinite Power Solutions

9.20. Kokam America

9.21. LGChem

9.22. Microsemi

9.23. MIT

9.24. National Renewable

9.25. NEC

9.26. Nippon Chemi-Con Japan

9.27. Oak Ridge

9.28. Panasonic (formerly Matsushita, now owns Sanyo)

9.29. PolyPlus Battery

9.30. Planar

9.31. Renata

9.32. ReVolt

9.33. Saft

9.34. Sandia

9.35. Solicore

9.36. Superlattice

9.37. Tadiran

9.38. Tech Univ Berlin

9.39. Toshiba

9.40. Sony

9.41. Univ Calif

9.42. Virtual Extension

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY

APPENDIX 2: GLOSSARY

To order this report:

: Wireless Sensor Networks 2012-2022

Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have spoken with, or attended presentations from, utilities in the United States, South America, Asia and Europe. This session will provide a look at the CREPE drivers for SmartGrids and the solution spaces used by SmartGrids today and planned for the near future. All organizations can learn from SmartGrid’s use of Predictive Maintenance, Demand Prediction, Cloud, Big Data and Customer-facing Dashboards...
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Whether you're a startup or a 100 year old enterprise, the Internet of Things offers a variety of new capabilities for your business. IoT style solutions can help you get closer your customers, launch new product lines and take over an industry. Some companies are dipping their toes in, but many have already taken the plunge, all while dramatic new capabilities continue to emerge. In his session at Internet of @ThingsExpo, Reid Carlberg, Senior Director, Developer Evangelism at salesforce.com, to discuss real-world use cases, patterns and opportunities you can harness today.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...