Click here to close now.


Microsoft Cloud Authors: Jayaram Krishnaswamy, Elizabeth White, Andreas Grabner, Jim Kaskade, Pat Romanski

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Microsoft Cloud, Agile Computing, @CloudExpo

Containers Expo Blog: Article

The Seven Properties of Network Virtualization

A great starting point for requirements for your enterprise architecture

A review of the key properties of network virtualization can inform your planning and help in requirements generation as you architect new systems. The best source of information I’ve found on network virtualization is at Nicira, a firm anyone with an infrastructure should be paying attention to now.

The following is drawn from their paper on The Seven Properties of Network Virtualization”

1. Independence from network hardware
In the emerging multi-tenant cloud, the old rules of vendor lock-in are rapidly changing. A network virtualization platform must be able to operate on top of any network hardware, much like x86 server hypervisors work on top of any server. This independence means the physical network can be supplied by any combination of hardware vendors. Over time, newer architectures that better support virtualization as well as commodity options are becoming available, further improving the capital efficiency of cloud.

2. Faithful reproduction of the physical network service model
The vast bulk of enterprise applications have not been written as web applications, and the cost/payback ratio of rewriting tens of billions of dollars of application development is neither realistic nor even possible. Therefore, a network virtualization platform must be able to support any workload that runs within a physical environment today. In order to do so, it must recreate Layer 2 and Layer 3 semantics fully, including support for broadcast and multicast. In addition it must be able to offer higher-level in-network services that are used in networks today such as ACLs, load balancing, and WAN optimization.

It is also important that the virtual network solution fully virtualize the network address space. Commonly, virtual networks are migrated from or integrated with physical environments where it is not possible to change the current addresses of the VMs. Therefore, it is important that a virtual network environment not dictate or limit the addresses that can be used within the virtual networks, and that it allows overlapping IP and MAC addresses between virtual networks.

3. Follow operational model of compute virtualization
A key property of compute virtualization is the ability to treat a VM as soft state, meaning it can be moved, paused, resumed, snapshotted, and rewound to a previous configuration. In order to integrate seamlessly in a virtualized environment, a network virtualization solution must support the same control and flexibility for virtual networks.

4. Compatible with any hypervisor platform
Network virtualization platforms must also be able to work with the full range of server hypervisors, including Xen, XenServer, KVM, ESX, and HyperV, providing the ability to control virtualized network connectivity across any network substrate as well as between hypervisor environments. This “any-to-any” paradigm shift provides for:

  • Ÿ More effective utilization of existing network investments,
  • Ÿ Cost and management reduction of new, Layer 3 fabric innovations,
  • Ÿ Workload portability from enterprise to cloud service provider environments.

5. Secure isolation between virtual networks, the physical network, and the control plane
The promise of multi-tenancy requires maximum utilization of compute, storage and network assets through sharing of the physical infrastructure. It is important that a network virtualization platform maintain this consolidation while still providing the isolation needed by regulatory compliance standards such as PCI or FINRA, as well as provide the same security guarantees of compute virtualization.Like compute virtualization, a network virtualization platform should provide strict address isolation between virtual networks (meaning one virtual network cannot inadvertently address another) as well address isolation between the virtual networks and the physical network. This last property removes the physical network as an attack target unless the virtualization platform itself is undermined.

6. Cloud performance and scale
Cloud drives a significant increase in the scale of tenants, servers, and applications supported in a single data center. However, current networks are still bound by the physical limitations of networks, especially VLANs (which are limited to 4,096). VLANS were designed during an earlier era before server virtualization dramatically increased the requirements for the numbers of virtually isolated environments. Network virtualization must support considerably larger scale deployments with tens thousands, or even hundreds of thousands of virtual networks. This not only enables a larger number of tenants, but also support critical services like disaster recovery, data center utilization, etc., which outstrip current limitations.

A virtual network solution should also not introduce any chokepoints or single points of failure into the network. This roughly entails that to all components for the solution must be fully distributed, and all network paths should support multi-pathing and failover. Finally, a network virtualization solution should also not significantly impact data path performance. The number of lookups on the data path required to implemented network virtualization is similar to what data paths perform today. It is possible to implement full network virtualization in software at the edge of the network and still perform at full 10G line rates.

7. Programmatic network provisioning and control
Traditionally, networks are configured one device at a time, although this can be accelerated through the development of scripts (which emulate individual configuration). Current approaches make network configuration slow, error prone and open to security holes through a mistaken keystroke. In a large-scale cloud environment, this introduces a level of fragility and manual configuration costs that hurt service velocity and/or profitability.

A network virtualization solution should provide full control over all virtual network resources and allow for these resources to be managed programmatically. This allows the provisioning to happen at the service level versus the element level significantly simplifying provisioning logic and any disruption that might occur due to physical network node failure. The programmatic API should provide full access to management and configuration of a virtual network to not only support dynamic provisioning at cloud time scales, but also the ability to introduce and configure services on the fly.

Concluding Thoughts
The seven key features above are a great starting point for requirements for your enterprise architecture. The good news is that you can enjoy all these features of network virtualization without significant change. The only thing it really requires is an understanding of this new approach and access to the technical thought leadership.

For more on this topic a great place to start your research is with Nicira.


This post by was first published at

More Stories By Bob Gourley

Bob Gourley, former CTO of the Defense Intelligence Agency (DIA), is Founder and CTO of Crucial Point LLC, a technology research and advisory firm providing fact based technology reviews in support of venture capital, private equity and emerging technology firms. He has extensive industry experience in intelligence and security and was awarded an intelligence community meritorious achievement award by AFCEA in 2008, and has also been recognized as an Infoworld Top 25 CTO and as one of the most fascinating communicators in Government IT by GovFresh.

@ThingsExpo Stories
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.