Click here to close now.

Welcome!

.NET Authors: Andreas Grabner, Pat Romanski, Elizabeth White, Tad Anderson, Gregor Petri

Related Topics: SOA & WOA

SOA & WOA: Article

In-Memory BI Is Not the Future, It’s the Past

Why the current in-memory BI hype can be misleading.

In recent times, one of the most popular subjects related to the field of Business Intelligence (BI) has been In-memory BI technology. The subject gained popularity largely due to the success of QlikTech, provider of the in-memory-based QlikView BI product. Following QlikTech’s lead, many other BI vendors have jumped on the in-memory “hype wagon,” including the software giant, Microsoft, which has been aggressively marketing PowerPivot, their own in-memory database engine.

The increasing hype surrounding in-memory BI has caused BI consultants, analysts and even vendors to spew out endless articles, blog posts and white papers on the subject, many of which have also gone the extra mile to describe in-memory technology as the future of business intelligence, the death blow to the data warehouse and the swan song of OLAP technology. I find one of these in my inbox every couple of weeks.

Just so it is clear - the concept of in-memory business intelligence is not new. It has been around for many years. The only reason it became widely known recently is because it wasn’t feasible before 64-bit computing became commonly available. Before 64-bit processors, the maximum amount of RAM a computer could utilize was barely 4GB, which is hardly enough to accommodate even the simplest of multi-user BI solutions. Only when 64-bit systems became cheap enough did it became possible to consider in-memory technology as a practical option for BI.

The success of QlikTech and the relentless activities of Microsoft’s marketing machine have managed to confuse many in terms of what role in-memory technology plays in BI implementations. And that is why many of the articles out there, which are written by marketers or market analysts who are not proficient in the internal workings of database technology (and assume their readers aren’t either), are usually filled with inaccuracies and, in many cases, pure nonsense.

The purpose of this article is to put both in-memory and disk-based BI technologies in perspective, explain the differences between them and finally lay out, in simple terms, why disk-based BI technology isn’t on its way to extinction. Rather, disk-based BI technology is evolving into something that will significantly limit the use of in-memory technology in typical BI implementations.

But before we get to that, for the sake of those who are not very familiar with in-memory BI technology, here’s a brief introduction to the topic.

Disk and RAM
Generally speaking, your computer has two types of data storage mechanisms – disk (often called a hard disk) and RAM (random access memory). The important differences between them (for this discussion) are outlined in the following table:

Disk RAM
Abundant Scarce
Slower Faster
Cheap Expensive
Long-term Short-term

Most modern computers have 15-100 times more available disk storage than they do RAM. My laptop, for example, has 8GB of RAM and 300GB of available disk space. However, reading data from disk is much slower than reading the same data from RAM. This is one of the reasons why 1GB of RAM costs approximately 320 times that of 1GB of disk space.

Another important distinction is what happens to the data when the computer is powered down: data stored on disk is unaffected (which is why your saved documents are still there the next time you turn on your computer), but data residing in RAM is instantly lost. So, while you don’t have to re-create your disk-stored Microsoft Word documents after a reboot, you do have to re-load the operating system, re-launch the word processor and reload your document. This is because applications and their internal data are partly, if not entirely, stored in RAM while they are running.

Disk-based Databases and In-memory Databases
Now that we have a general idea of what the basic differences between disk and RAM are, what are the differences between disk-based and in-memory databases? Well, all data is always kept on hard disks (so that they are saved even when the power goes down). When we talk about whether a database is disk-based or in-memory, we are talking about where the data resides while it is actively being queried by an application: with disk-based databases, the data is queried while stored on disk and with in-memory databases, the data being queried is first loaded into RAM.

Disk-based databases are engineered to efficiently query data residing on the hard drive. At a very basic level, these databases assume that the entire data cannot fit inside the relatively small amount of RAM available and therefore must have very efficient disk reads in order for queries to be returned within a reasonable time frame. The engineers of such databases have the benefit of unlimited storage, but must face the challenges of relying on relatively slow disk operations.

On the other hand, in-memory databases work under the opposite assumption that the data can, in fact, fit entirely inside the RAM. The engineers of in-memory databases benefit from utilizing the fastest storage system a computer has (RAM), but have much less of it at their disposal.

That is the fundamental trade-off in disk-based and in-memory technologies: faster reads and limited amounts of data versus slower reads and practically unlimited amounts of data. These are two critical considerations for business intelligence applications, as it is important both to have fast query response times and to have access to as much data as possible.

The Data Challenge
A business intelligence solution (almost) always has a single data store at its center. This data store is usually called a database, data warehouse, data mart or OLAP cube. This is where the data that can be queried by the BI application is stored.

The challenges in creating this data store using traditional disk-based technologies is what gave in-memory technology its 15 minutes (ok, maybe 30 minutes) of fame. Having the entire data model stored inside RAM allowed bypassing some of the challenges encountered by their disk-based counterparts, namely the issue of query response times or ‘slow queries.’

Disk-based BI
When saying ‘traditional disk-based’ technologies, we typically mean relational database management systems (RDBMS) such as SQL Server, Oracle, MySQL and many others. It’s true that having a BI solution perform well using these types of databases as their backbone is far more challenging than simply shoving the entire data model into RAM, where performance gains would be immediate due to the fact RAM is so much faster than disk.

It’s commonly thought that relational databases are too slow for BI queries over data in (or close to) its raw form due to the fact they are disk-based. The truth is, however, that it’s because of how they use the disk and how often they use it.

Relational databases were designed with transactional processing in mind. But having a database be able to support high-performance insertions and updates of transactions (i.e., rows in a table) as well as properly accommodating the types of queries typically executed in BI solutions (e.g., aggregating, grouping, joining) is impossible. These are two mutually-exclusive engineering goals, that is to say they require completely different architectures at the very core. You simply can’t use the same approach to ideally achieve both.

In addition, the standard query language used to extract transactions from relational databases (SQL) is syntactically designed for the efficient fetching of rows, while rare are the cases in BI where you would need to scan or retrieve an entire row of data. It is nearly impossible to formulate an efficient BI query using SQL syntax.

So while relational databases are great as the backbone of operational applications such as CRM, ERP or Web sites, where transactions are frequently and simultaneously inserted, they are a poor choice for supporting analytic applications which usually involve simultaneous retrieval of partial rows along with heavy calculations.

In-memory BI
In-memory databases approach the querying problem by loading the entire dataset into RAM. In so doing, they remove the need to access the disk to run queries, thus gaining an immediate and substantial performance advantage (simply because scanning data in RAM is orders of magnitude faster than reading it from disk). Some of these databases introduce additional optimizations which further improve performance. Most of them also employ compression techniques to represent even more data in the same amount of RAM.

Regardless of what fancy footwork is used with an in-memory database, storing the entire dataset in RAM has a serious implication: the amount of data you can query with in-memory technology is limited by the amount of free RAM available, and there will always be much less available RAM than available disk space.

The bottom line is that this limited memory space means that the quality and effectiveness of your BI application will be hindered: the more historical data to which you have access and/or the more fields you can query, the better analysis, insight and, well, intelligence you can get.

You could add more and more RAM, but then the hardware you require becomes exponentially more expensive. The fact that 64-bit computers are cheap and can theoretically support unlimited amounts of RAM does not mean they actually do in practice. A standard desktop-class (read: cheap) computer with standard hardware physically supports up to 12GB of RAM today. If you need more, you can move on to a different class of computer which costs about twice as much and will allow you up to 64GB. Beyond 64GB, you can no longer use what is categorized as a personal computer but will require a full-blown server which brings you into very expensive computing territory.

It is also important to understand that the amount of RAM you need is not only affected by the amount of data you have, but also by the number of people simultaneously querying it. Having 5-10 people using the same in-memory BI application could easily double the amount of RAM required for intermediate calculations that need to be performed to generate the query results. A key success factor in most BI solutions is having a large number of users, so you need to tread carefully when considering in-memory technology for real-world BI. Otherwise, your hardware costs may spiral beyond what you are willing or able to spend (today, or in the future as your needs increase).

There are other implications to having your data model stored in memory, such as having to re-load it from disk to RAM every time the computer reboots and not being able to use the computer for anything other than the particular data model you’re using because its RAM is all used up.

A Note about QlikView and PowerPivot In-memory Technologies
QlikTech is the most active in-memory BI player out there so their QlikView in-memory technology is worth addressing in its own right. It has been repeatedly described as “unique, patented associative technology” but, in fact, there is nothing “associative” about QlikView’s in-memory technology. QlikView uses a simple tabular data model, stored entirely in-memory, with basic token-based compression applied to it. In QlikView’s case, the word associative relates to the functionality of its user interface, not how the data model is physically stored. Associative databases are a completely different beast and have nothing in common with QlikView’s technology.

PowerPivot uses a similar concept, but is engineered somewhat differently due to the fact it’s meant to be used largely within Excel. In this respect, PowerPivot relies on a columnar approach to storage that is better suited for the types of calculations conducted in Excel 2010, as well as for compression. Quality of compression is a significant differentiator between in-memory technologies as better compression means that you can store more data in the same amount RAM (i.e., more data is available for users to query). In its current version, however, PowerPivot is still very limited in the amounts of data it supports and requires a ridiculous amount of RAM.

The Present and Future Technologies
The destiny of BI lies in technologies that leverage the respective benefits of both disk-based and in-memory technologies to deliver fast query responses and extensive multi-user access without monstrous hardware requirements. Obviously, these technologies cannot be based on relational databases, but they must also not be designed to assume a massive amount of RAM, which is a very scarce resource.

These types of technologies are not theoretical anymore and are already utilized by businesses worldwide. Some are designed to distribute different portions of complex queries across multiple cheaper computers (this is a good option for cloud-based BI systems) and some are designed to take advantage of 21st-century hardware (multi-core architectures, upgraded CPU cache sizes, etc.) to extract more juice from off-the-shelf computers.

A Final Note: ElastiCube Technology
The technology developed by the company I co-founded, SiSense, belongs to the latter category. That is, SiSense utilizes technology which combines the best of disk-based and in-memory solutions, essentially eliminating the downsides of each. SiSense’s BI product, Prism, enables a standard PC to deliver a much wider variety of BI solutions, even when very large amounts of data, large numbers of users and/or large numbers of data sources are involved, as is the case in typical BI projects.

When we began our research at SiSense, our technological assumption was that it is possible to achieve in-memory-class query response times, even for hundreds of users simultaneously accessing massive data sets, while keeping the data (mostly) stored on disk. The result of our hybrid disk-based/in-memory technology is a BI solution based on what we now call ElastiCube, after which this blog is named. You can read more about this technological approach, which we call Just-in-Time In-memory Processing, at our BI Software Evolved technology page.

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

@ThingsExpo Stories
Even as cloud and managed services grow increasingly central to business strategy and performance, challenges remain. The biggest sticking point for companies seeking to capitalize on the cloud is data security. Keeping data safe is an issue in any computing environment, and it has been a focus since the earliest days of the cloud revolution. Understandably so: a lot can go wrong when you allow valuable information to live outside the firewall. Recent revelations about government snooping, along with a steady stream of well-publicized data breaches, only add to the uncertainty
Hadoop as a Service (as offered by handful of niche vendors now) is a cloud computing solution that makes medium and large-scale data processing accessible, easy, fast and inexpensive. In his session at Big Data Expo, Kumar Ramamurthy, Vice President and Chief Technologist, EIM & Big Data, at Virtusa, will discuss how this is achieved by eliminating the operational challenges of running Hadoop, so one can focus on business growth. The fragmented Hadoop distribution world and various PaaS solutions that provide a Hadoop flavor either make choices for customers very flexible in the name of opti...
The Workspace-as-a-Service (WaaS) market will grow to $6.4B by 2018. In his session at 16th Cloud Expo, Seth Bostock, CEO of IndependenceIT, will begin by walking the audience through the evolution of Workspace as-a-Service, where it is now vs. where it going. To look beyond the desktop we must understand exactly what WaaS is, who the users are, and where it is going in the future. IT departments, ISVs and service providers must look to workflow and automation capabilities to adapt to growing demand and the rapidly changing workspace model.
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
As organizations shift toward IT-as-a-service models, the need for managing and protecting data residing across physical, virtual, and now cloud environments grows with it. CommVault can ensure protection &E-Discovery of your data – whether in a private cloud, a Service Provider delivered public cloud, or a hybrid cloud environment – across the heterogeneous enterprise. In his session at 16th Cloud Expo, Randy De Meno, Chief Technologist - Windows Products and Microsoft Partnerships, will discuss how to cut costs, scale easily, and unleash insight with CommVault Simpana software, the only si...
Cloud data governance was previously an avoided function when cloud deployments were relatively small. With the rapid adoption in public cloud – both rogue and sanctioned, it’s not uncommon to find regulated data dumped into public cloud and unprotected. This is why enterprises and cloud providers alike need to embrace a cloud data governance function and map policies, processes and technology controls accordingly. In her session at 15th Cloud Expo, Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems, will focus on how to set up a cloud data governance program and s...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
The Internet of Things (IoT) promises to evolve the way the world does business; however, understanding how to apply it to your company can be a mystery. Most people struggle with understanding the potential business uses or tend to get caught up in the technology, resulting in solutions that fail to meet even minimum business goals. In his session at @ThingsExpo, Jesse Shiah, CEO / President / Co-Founder of AgilePoint Inc., showed what is needed to leverage the IoT to transform your business. He discussed opportunities and challenges ahead for the IoT from a market and technical point of vie...
Advanced Persistent Threats (APTs) are increasing at an unprecedented rate. The threat landscape of today is drastically different than just a few years ago. Attacks are much more organized and sophisticated. They are harder to detect and even harder to anticipate. In the foreseeable future it's going to get a whole lot harder. Everything you know today will change. Keeping up with this changing landscape is already a daunting task. Your organization needs to use the latest tools, methods and expertise to guard against those threats. But will that be enough? In the foreseeable future attacks w...
HP and Aruba Networks on Monday announced a definitive agreement for HP to acquire Aruba, a provider of next-generation network access solutions for the mobile enterprise, for $24.67 per share in cash. The equity value of the transaction is approximately $3.0 billion, and net of cash and debt approximately $2.7 billion. Both companies' boards of directors have approved the deal. "Enterprises are facing a mobile-first world and are looking for solutions that help them transition legacy investments to the new style of IT," said Meg Whitman, Chairman, President and Chief Executive Officer of HP...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
Disruptive macro trends in technology are impacting and dramatically changing the "art of the possible" relative to supply chain management practices through the innovative use of IoT, cloud, machine learning and Big Data to enable connected ecosystems of engagement. Enterprise informatics can now move beyond point solutions that merely monitor the past and implement integrated enterprise fabrics that enable end-to-end supply chain visibility to improve customer service delivery and optimize supplier management. Learn about enterprise architecture strategies for designing connected systems tha...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
With several hundred implementations of IoT-enabled solutions in the past 12 months alone, this session will focus on experience over the art of the possible. Many can only imagine the most advanced telematics platform ever deployed, supporting millions of customers, producing tens of thousands events or GBs per trip, and hundreds of TBs per month. With the ability to support a billion sensor events per second, over 30PB of warm data for analytics, and hundreds of PBs for an data analytics archive, in his session at @ThingsExpo, Jim Kaskade, Vice President and General Manager, Big Data & Ana...