Welcome!

Microsoft Cloud Authors: Pat Romanski, Liz McMillan, John Basso, Elizabeth White, Mihai Corbuleac

Related Topics: Microservices Expo

Microservices Expo: Article

In-Memory BI Is Not the Future, It’s the Past

Why the current in-memory BI hype can be misleading.

In recent times, one of the most popular subjects related to the field of Business Intelligence (BI) has been In-memory BI technology. The subject gained popularity largely due to the success of QlikTech, provider of the in-memory-based QlikView BI product. Following QlikTech’s lead, many other BI vendors have jumped on the in-memory “hype wagon,” including the software giant, Microsoft, which has been aggressively marketing PowerPivot, their own in-memory database engine.

The increasing hype surrounding in-memory BI has caused BI consultants, analysts and even vendors to spew out endless articles, blog posts and white papers on the subject, many of which have also gone the extra mile to describe in-memory technology as the future of business intelligence, the death blow to the data warehouse and the swan song of OLAP technology. I find one of these in my inbox every couple of weeks.

Just so it is clear - the concept of in-memory business intelligence is not new. It has been around for many years. The only reason it became widely known recently is because it wasn’t feasible before 64-bit computing became commonly available. Before 64-bit processors, the maximum amount of RAM a computer could utilize was barely 4GB, which is hardly enough to accommodate even the simplest of multi-user BI solutions. Only when 64-bit systems became cheap enough did it became possible to consider in-memory technology as a practical option for BI.

The success of QlikTech and the relentless activities of Microsoft’s marketing machine have managed to confuse many in terms of what role in-memory technology plays in BI implementations. And that is why many of the articles out there, which are written by marketers or market analysts who are not proficient in the internal workings of database technology (and assume their readers aren’t either), are usually filled with inaccuracies and, in many cases, pure nonsense.

The purpose of this article is to put both in-memory and disk-based BI technologies in perspective, explain the differences between them and finally lay out, in simple terms, why disk-based BI technology isn’t on its way to extinction. Rather, disk-based BI technology is evolving into something that will significantly limit the use of in-memory technology in typical BI implementations.

But before we get to that, for the sake of those who are not very familiar with in-memory BI technology, here’s a brief introduction to the topic.

Disk and RAM
Generally speaking, your computer has two types of data storage mechanisms – disk (often called a hard disk) and RAM (random access memory). The important differences between them (for this discussion) are outlined in the following table:

Disk RAM
Abundant Scarce
Slower Faster
Cheap Expensive
Long-term Short-term

Most modern computers have 15-100 times more available disk storage than they do RAM. My laptop, for example, has 8GB of RAM and 300GB of available disk space. However, reading data from disk is much slower than reading the same data from RAM. This is one of the reasons why 1GB of RAM costs approximately 320 times that of 1GB of disk space.

Another important distinction is what happens to the data when the computer is powered down: data stored on disk is unaffected (which is why your saved documents are still there the next time you turn on your computer), but data residing in RAM is instantly lost. So, while you don’t have to re-create your disk-stored Microsoft Word documents after a reboot, you do have to re-load the operating system, re-launch the word processor and reload your document. This is because applications and their internal data are partly, if not entirely, stored in RAM while they are running.

Disk-based Databases and In-memory Databases
Now that we have a general idea of what the basic differences between disk and RAM are, what are the differences between disk-based and in-memory databases? Well, all data is always kept on hard disks (so that they are saved even when the power goes down). When we talk about whether a database is disk-based or in-memory, we are talking about where the data resides while it is actively being queried by an application: with disk-based databases, the data is queried while stored on disk and with in-memory databases, the data being queried is first loaded into RAM.

Disk-based databases are engineered to efficiently query data residing on the hard drive. At a very basic level, these databases assume that the entire data cannot fit inside the relatively small amount of RAM available and therefore must have very efficient disk reads in order for queries to be returned within a reasonable time frame. The engineers of such databases have the benefit of unlimited storage, but must face the challenges of relying on relatively slow disk operations.

On the other hand, in-memory databases work under the opposite assumption that the data can, in fact, fit entirely inside the RAM. The engineers of in-memory databases benefit from utilizing the fastest storage system a computer has (RAM), but have much less of it at their disposal.

That is the fundamental trade-off in disk-based and in-memory technologies: faster reads and limited amounts of data versus slower reads and practically unlimited amounts of data. These are two critical considerations for business intelligence applications, as it is important both to have fast query response times and to have access to as much data as possible.

The Data Challenge
A business intelligence solution (almost) always has a single data store at its center. This data store is usually called a database, data warehouse, data mart or OLAP cube. This is where the data that can be queried by the BI application is stored.

The challenges in creating this data store using traditional disk-based technologies is what gave in-memory technology its 15 minutes (ok, maybe 30 minutes) of fame. Having the entire data model stored inside RAM allowed bypassing some of the challenges encountered by their disk-based counterparts, namely the issue of query response times or ‘slow queries.’

Disk-based BI
When saying ‘traditional disk-based’ technologies, we typically mean relational database management systems (RDBMS) such as SQL Server, Oracle, MySQL and many others. It’s true that having a BI solution perform well using these types of databases as their backbone is far more challenging than simply shoving the entire data model into RAM, where performance gains would be immediate due to the fact RAM is so much faster than disk.

It’s commonly thought that relational databases are too slow for BI queries over data in (or close to) its raw form due to the fact they are disk-based. The truth is, however, that it’s because of how they use the disk and how often they use it.

Relational databases were designed with transactional processing in mind. But having a database be able to support high-performance insertions and updates of transactions (i.e., rows in a table) as well as properly accommodating the types of queries typically executed in BI solutions (e.g., aggregating, grouping, joining) is impossible. These are two mutually-exclusive engineering goals, that is to say they require completely different architectures at the very core. You simply can’t use the same approach to ideally achieve both.

In addition, the standard query language used to extract transactions from relational databases (SQL) is syntactically designed for the efficient fetching of rows, while rare are the cases in BI where you would need to scan or retrieve an entire row of data. It is nearly impossible to formulate an efficient BI query using SQL syntax.

So while relational databases are great as the backbone of operational applications such as CRM, ERP or Web sites, where transactions are frequently and simultaneously inserted, they are a poor choice for supporting analytic applications which usually involve simultaneous retrieval of partial rows along with heavy calculations.

In-memory BI
In-memory databases approach the querying problem by loading the entire dataset into RAM. In so doing, they remove the need to access the disk to run queries, thus gaining an immediate and substantial performance advantage (simply because scanning data in RAM is orders of magnitude faster than reading it from disk). Some of these databases introduce additional optimizations which further improve performance. Most of them also employ compression techniques to represent even more data in the same amount of RAM.

Regardless of what fancy footwork is used with an in-memory database, storing the entire dataset in RAM has a serious implication: the amount of data you can query with in-memory technology is limited by the amount of free RAM available, and there will always be much less available RAM than available disk space.

The bottom line is that this limited memory space means that the quality and effectiveness of your BI application will be hindered: the more historical data to which you have access and/or the more fields you can query, the better analysis, insight and, well, intelligence you can get.

You could add more and more RAM, but then the hardware you require becomes exponentially more expensive. The fact that 64-bit computers are cheap and can theoretically support unlimited amounts of RAM does not mean they actually do in practice. A standard desktop-class (read: cheap) computer with standard hardware physically supports up to 12GB of RAM today. If you need more, you can move on to a different class of computer which costs about twice as much and will allow you up to 64GB. Beyond 64GB, you can no longer use what is categorized as a personal computer but will require a full-blown server which brings you into very expensive computing territory.

It is also important to understand that the amount of RAM you need is not only affected by the amount of data you have, but also by the number of people simultaneously querying it. Having 5-10 people using the same in-memory BI application could easily double the amount of RAM required for intermediate calculations that need to be performed to generate the query results. A key success factor in most BI solutions is having a large number of users, so you need to tread carefully when considering in-memory technology for real-world BI. Otherwise, your hardware costs may spiral beyond what you are willing or able to spend (today, or in the future as your needs increase).

There are other implications to having your data model stored in memory, such as having to re-load it from disk to RAM every time the computer reboots and not being able to use the computer for anything other than the particular data model you’re using because its RAM is all used up.

A Note about QlikView and PowerPivot In-memory Technologies
QlikTech is the most active in-memory BI player out there so their QlikView in-memory technology is worth addressing in its own right. It has been repeatedly described as “unique, patented associative technology” but, in fact, there is nothing “associative” about QlikView’s in-memory technology. QlikView uses a simple tabular data model, stored entirely in-memory, with basic token-based compression applied to it. In QlikView’s case, the word associative relates to the functionality of its user interface, not how the data model is physically stored. Associative databases are a completely different beast and have nothing in common with QlikView’s technology.

PowerPivot uses a similar concept, but is engineered somewhat differently due to the fact it’s meant to be used largely within Excel. In this respect, PowerPivot relies on a columnar approach to storage that is better suited for the types of calculations conducted in Excel 2010, as well as for compression. Quality of compression is a significant differentiator between in-memory technologies as better compression means that you can store more data in the same amount RAM (i.e., more data is available for users to query). In its current version, however, PowerPivot is still very limited in the amounts of data it supports and requires a ridiculous amount of RAM.

The Present and Future Technologies
The destiny of BI lies in technologies that leverage the respective benefits of both disk-based and in-memory technologies to deliver fast query responses and extensive multi-user access without monstrous hardware requirements. Obviously, these technologies cannot be based on relational databases, but they must also not be designed to assume a massive amount of RAM, which is a very scarce resource.

These types of technologies are not theoretical anymore and are already utilized by businesses worldwide. Some are designed to distribute different portions of complex queries across multiple cheaper computers (this is a good option for cloud-based BI systems) and some are designed to take advantage of 21st-century hardware (multi-core architectures, upgraded CPU cache sizes, etc.) to extract more juice from off-the-shelf computers.

A Final Note: ElastiCube Technology
The technology developed by the company I co-founded, SiSense, belongs to the latter category. That is, SiSense utilizes technology which combines the best of disk-based and in-memory solutions, essentially eliminating the downsides of each. SiSense’s BI product, Prism, enables a standard PC to deliver a much wider variety of BI solutions, even when very large amounts of data, large numbers of users and/or large numbers of data sources are involved, as is the case in typical BI projects.

When we began our research at SiSense, our technological assumption was that it is possible to achieve in-memory-class query response times, even for hundreds of users simultaneously accessing massive data sets, while keeping the data (mostly) stored on disk. The result of our hybrid disk-based/in-memory technology is a BI solution based on what we now call ElastiCube, after which this blog is named. You can read more about this technological approach, which we call Just-in-Time In-memory Processing, at our BI Software Evolved technology page.

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

@ThingsExpo Stories
The IoT has the potential to create a renaissance of manufacturing in the US and elsewhere. In his session at 18th Cloud Expo, Florent Solt, CTO and chief architect of Netvibes, discussed how the expected exponential increase in the amount of data that will be processed, transported, stored, and accessed means there will be a huge demand for smart technologies to deliver it. Florent Solt is the CTO and chief architect of Netvibes. Prior to joining Netvibes in 2007, he co-founded Rift Technologi...
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
Unless your company can spend a lot of money on new technology, re-engineering your environment and hiring a comprehensive cybersecurity team, you will most likely move to the cloud or seek external service partnerships. In his session at 18th Cloud Expo, Darren Guccione, CEO of Keeper Security, revealed what you need to know when it comes to encryption in the cloud.
What are the successful IoT innovations from emerging markets? What are the unique challenges and opportunities from these markets? How did the constraints in connectivity among others lead to groundbreaking insights? In her session at @ThingsExpo, Carmen Feliciano, a Principal at AMDG, will answer all these questions and share how you can apply IoT best practices and frameworks from the emerging markets to your own business.
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Ask someone to architect an Internet of Things (IoT) solution and you are guaranteed to see a reference to the cloud. This would lead you to believe that IoT requires the cloud to exist. However, there are many IoT use cases where the cloud is not feasible or desirable. In his session at @ThingsExpo, Dave McCarthy, Director of Products at Bsquare Corporation, will discuss the strategies that exist to extend intelligence directly to IoT devices and sensors, freeing them from the constraints of ...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, discussed the importance of WebRTC and how it enables companies to focus...
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, discussed the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filterin...
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...
Early adopters of IoT viewed it mainly as a different term for machine-to-machine connectivity or M2M. This is understandable since a prerequisite for any IoT solution is the ability to collect and aggregate device data, which is most often presented in a dashboard. The problem is that viewing data in a dashboard requires a human to interpret the results and take manual action, which doesn’t scale to the needs of IoT.
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, provided tips on how to be successful in large scale machine learning...
What does it look like when you have access to cloud infrastructure and platform under the same roof? Let’s talk about the different layers of Technology as a Service: who cares, what runs where, and how does it all fit together. In his session at 18th Cloud Expo, Phil Jackson, Lead Technology Evangelist at SoftLayer, an IBM company, spoke about the picture being painted by IBM Cloud and how the tools being crafted can help fill the gaps in your IT infrastructure.
"delaPlex is a software development company. We do team-based outsourcing development," explained Mark Rivers, COO and Co-founder of delaPlex Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"C2M is our digital transformation and IoT platform. We've had C2M on the market for almost three years now and it has a comprehensive set of functionalities that it brings to the market," explained Mahesh Ramu, Vice President, IoT Strategy and Operations at Plasma, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Traditional IT, great for stable systems of record, is struggling to cope with newer, agile systems of engagement requirements coming straight from the business. In his session at 18th Cloud Expo, William Morrish, General Manager of Product Sales at Interoute, outlined ways of exploiting new architectures to enable both systems and building them to support your existing platforms, with an eye for the future. Technologies such as Docker and the hyper-convergence of computing, networking and sto...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.